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ABSTRACT , 

The “single line vortex with a straight feeding vortex sheet” model has been used to 

model the steady, inviscid, incompressible, conical flow field around a delta wing with 

elliptical cross-section exhibiting leading-edge separation. The effect of the location of the 

separation points on the formation of the vortices, on their strength and position, as well 

as on the resulting lift on the wing has also been studied. 

The results show that : 

(i) 

delta wing. 

A delta wing with elliptical cross-section has a higher lift curve slope than a flat 

(ii) Significant gain in lift can be realized by forcing the separation points away from 

their natural positions on the upper surface of the wing, towards the leading-edge or even 

farther on the wing’s lower surface. 

(iii) Both of the advantages mentioned above cannot be realized at small angles of 

attack, due to the increased difficulty in the formation of the vortex system as the wing 

becomes thicker and/or the separation points are moved away from their natural positions. 

.. u 



NOMENCLATURE 

English letter symbo:s : 

a 

a0 

b 

bo 

CL 
CP 
s 
k 
L 
N 
P 
9 
R 
ZR 
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S 

SWP 
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U 

U 
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V 

V" 
W 

w,19 w,2 

W 
=,Y9= 

semi-majo; axis of the elliptical cross-section of the wing 
term in UI, defined in appendix 1 

semi-minor ais of the elliptical cross-sect ion of the wing 
term in w, defined in appendix 1 

= d m ,  geometric parameter of the ellipse 
lift coefficient 
pressure coefficient 
denotes the imaginary part of the complex quantity involved 
= I'/27r, vortex strength 
lift force 
normal force 
static pressure 
dynamic' pressure 
= (a  + 6)/2, local radius of the transformed circular cone 

denotes the real part of the complex quantity involved 
SP location in the physical cross-flow plane (o-plane) 

area of the cross-section of the wing 
projected wing area 
SP location in the transformed cross-flow plane (@-plane) 
cross-flow velocity component along the y-axis 

velocity component along the z-axis 
cross-flow velocity component along the z-axis 
transformed velocity defined by equation (31) 

fluid velocity normal to the line vortex 
complex potential 
complex potential due to a line source distribution 
components of w, defined by equations (7) and (8) respectively 
velocity component along the z-axis 
Cartesian coordinates fixed at the apex of the wing 
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Greek letter symbols : 

a angle of attack 

B = d l - M &  

vortex sheet strength 
circulation of the line vortex 
wing semi-apex angle in the (2, z )  plane 
excursions of the SP from the LE along the y and z axes respectively 
wing semi-apex angle in the (z, y) plane 
complex variable in the vertical flat-plate plane 
distance of the SP from the LE along the surface of the ellipse 
complex variable in the circle plane 
dummy variable used for integration in appendix 1 

fluid density 
complex variable in the ellipse plane 
perturbation velocity potential 
total velocity potential 
perturbation stream function 

Subscripts : 

c f 
=, Y,Z 

00 

1 

refers to the cross-flow plane 
denote partial derivatives with respect to x,y,z respectively 
refers to the undisturbed flow field 
refers to the vortex position 

Superscripts : 

denotes the complex conjugate of the parameter involved 

Abbreviations : 

LE leading edge 
SP separation point 
SPUS 
SPLS 

the separation point is on the upper surface 
the separation point is on the lower surface 
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1. INTRODUCTION 

It is well known that starting at moderate angles of attack, the flow separates from 

the lee side of lifting bodies. From this separation, fluid with high vorticity is convected 

upwards, away from the wing surface, so that the resulting flow pattern is quite different 

from that of attached flow in which the vorticity is only appreciable in the boundary layer. 

For highly swept-back delta wings, usually a single shear layer arises along the whole 

length of each leading-edge and rolls up into a spiral trailing vortex. The influence of these 

vortices is so strong, that slender body theory alone is inadequate to accurately estimate 

the lift on such wings. 

A first simlification in an effort to study a complicated flow field such as the one 

described above, would be to consider an inviscid model of the flow in which the shear 

layer and the vortex are represented by a spiral vortex sheet embedded in an otherwise 

irrotational flow. This model has already been studied by Smith (reference 3). To avoid 

the complexities of a curved vortex sheet, this model can be simplified even further by 

assuming a straight feeding vortex sheet and a single line vortex. 

The second simplification will be to consider the flow to be conical, which implies that 

all physical properties (such as velocity, pressure etc) are constant along the whole length 

of any half line originating at the apex of the wing. Although the only strictly conical 

flows are supersonic, observation suggests that the flow over the former half of a slender 

delta wing is nearly conical and therefore the assumption of conicality is a reasonable one. 

Since leading-edge separation is essentially confined to highly swept wings, the applica- 

tion of slender body theory to the single line vortex model seems appropriate. In addition, 

the use of the slender body theory avoids the difficulty associated with the assumption of 

a subsonic, conical flow (references 2,3). 
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Thus, the free stream can be either subsonic or supersonic, but in the later case 

both the cross-flow velocity component as well as the velocity component normal to the 

leading-edge must be subsonic. 

The main purpose of this work is to obtain a fast estimate of the velocity and pres- 

sure fields in the neighborhood of the leading edge, which can then be used in pursuing 

an analysis of the boundary layer. This analysis in turn, will enable us to predict the 

separation point by matching the viscous (inside the boundary layer) and inviscid (outside 

the boundary layer) flow fields around the wing. 

In addition, the effect of the position of the separation points on the formation of the 

vortices, on their strength and position, as well as on the resulting lift on the wing, has 
I 

~ been studied. 

Although the single line vortex model has already been applied on flat delta wings (ref- 

erence 2), as well as on circular cones (reference 4), and has given us important information 

I about this type of flow, it is necessary to fill the gap in the knowledge of aerodynamics of 
I 

shapes intermediate between bodies of revolution and flat triangular wings for the following 

reasons : 

First, for all practical purposes wings have to have some thickness in order to house 

the structure as well as the fuel. Secondly, as Jorgensen has pointed out (reference 5) there 

are distinct aerodynamic advantages to the use of elliptic cones. With their major axis 

horizontal, they develop greater lift and have higher lift-to-drag ratios than circular cones 

of the same fineness ratio and volume. 

Last but not least, the geometry of elliptic cones is still sufficiently easy, to make a 

fairly simple analysis possible. 

The geometric characteristics of a delta wing with elliptical cross-section are depicted 

I in figure ( I . ) .  
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2. ANALYSIS OF THE FLOW FIELD 

The problem considered here is that of potential flow about a slender delta wing with 

elliptical cross-section, on which the flow is separated from the leading edge. The equation 

of motion to be satisfied is : 

. However, if the analysis is restrict4 to highly swept wings, the first term may be 

neglected and the equation of motion becomes Laplace’s equation for incompressible two- 

dimensional flow: 

Pur + P Z L  = 0 

which is valid in the cross-plane (y, z )  at any station z along the wing. Thus, the three 

dimensionality of the problem will enter only through the boundary conditions. Solutions 

will be sought first for the flow about a circular cone and then transformed by means of 

conformal mapping to elliptical cones. 

2.1 The Complex Potential 

Refering to figure (2b), the complex potential for the cross-flow in the transformed 

(circle) plane is given by : 
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where the first term represents uniform flow past the circle (the angle of attack has 

been assumed small) and the second term represents a vortex pair in the leeward side 

together with its image inside the circle (as given by the circle theorem). The Joukowski 

transformation : 

~ 

can now be used to express the complex potential for the cross-flow in the physical 

(ellipse) plane : 

t (u+d-')2- 4 R2 
2 U + d =  

- -U& ( 5 )  

To this we need to add the complex potential for an expanding ellipse of constant axis 

ratio, in order to satisfy the tangency condition on the surface of the cone : 

where 

a,+ @=-2 
2 

w,, = U&ln 
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and 

The derivation of turl and tur2 is shown in appendix 1. The total complex potential in 

the physical plane is of course : 

2.2 The Velocity Field 

If the velocity potential @ is split in two parts : 

where 

P = w4 

then the components of the velocity at any point are: 

@* = &a + (02 

where 
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and 

dw de 9, = cps = -3 { $} = -3 { zz} 
The evaluation of the derivative dw/du is shown in appendix 3. 
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3. CONDITIONS 

The conditions that the solution- of equation (2) must satisfy re the following 

(i) Tangency condition on the wing. This is automatically satisfied by the complex 

potential of equation (9). 

(ii) Separation condition on the wing. The separation point has to be specified since 

the present inviscid model is unable to predict it. 

(iii) The disturbances must vanish at infinity. This condition is also automatically 

satisfied by the complex potential. 

(iv) The fluid pressure must be continuous everywhere. This condition however, can- 

not be met with the present model. The reason is that for conical flow the strength of 

the concentrated vortices is increasing linearly in the downstream direct ion, requiring thus 

a vortex sheet to connect them with the separation points on the wing, and feed them 

continuously with vorticity. This difficulty could of course be circumvented by assuming a 

curved feeding sheet, which would form part of a three-dimensional stream surface. The 

solution then would provide both the shape and the strength of the sheet (reference 3). 

However, the problem is greatly simplified by assuming a straight feeding sheet (as in fig- 

ure 3 ) and past experience has shown that such a model does capture the main features 

- 

of the flow. The last condition needs therefore to be replaced by: 

(iv)' The vortex system (feeding sheet and concentrated vortex) must be force free. 

3.1 Separation Condition 

The separation point must also be a stagnation point of the flow. Assuming only small 

- 7 -  



excursions of the separation point from the leading edge of the wing, its position in the 

physical plane can be represented by s(a - by, b,),  where 6, and 6, are small compared to 

a. Under the Joukowski transformation s goes into a point t in the &plane, given by : 

t = - a - 6, + :6, + d ( a  - bv)2  + 26,(a - 6,): - 6; - c21 
2 ’ [  ( 16) 

where 6, and 6, are related by : 

( a  - 6J 6; 
+ - = 1  

0 2  b2 

since s is a point of the elliptical cross-section. Solving for 6, we get : 

where the “plus” sign is used when the separation point is on the upper surface and 

the “minus” sign is used when the separation point is on the lower surface. Requiring the 

presence of a stagnation point at s is equivalent to : 

= O 

or from equation (3) 

-= uxff [ 8: + 2tB1 - R2 - R~ + 2te1 - e: 
k (t + el)(t8, - ~ 2 )  ( t  - el)(tel + R*) 

and substituting 8 from equation (4) we get : 
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3.2 Force Balance for the Vortex System 

Refering to figure (3), the vector force on each filamen. representing the v o r t i t y  lying 

between z and z + d x  is : 

where 

dr 
d z  

7 = - = const 

while the vector force on the concentrated vortex is : 

a 
-tpV,I' = -tpV,y- 

C 

since 

a 
C H -  

2 
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and 

The vector sum of the two forces must be zero : 

a 
t p U , q ( ~ l  - a + 6u - 26,) - tpVn7; = O * 

cl - a + Sy - sS, 
a 

vn = U,& 

Vn is the sum of the component of the main stream which is normal to the vortex, 

I plus the normal component of the velocity due to the disturbance potential cp .  Thus : 

Q1 

a 
Vn = -urn€- + [U + su],=u, 

Combining equations (24) and (25) we get : 

(25) 

and after rearranging real and imaginary parts, equation (26) yields : 
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The left hand side of equation (27) represents the mean velocity at the vortex location. 

To find another expression for it, we need to consider the effect of the total complex 

potential w(a), less the complex potential of the right-hand vortex, i.e. 

wl(a) = w(a) + tkln (a - ai) 

Differentiating to get the velocity : 

and substituting w from equation (9) while letting a --* ai finally gives : 

. 

1 ( ) ['+ 2R2 
[u - = -tU,a 1 + JW 2 (a, + 4- 12 

- , k ( l +  ) [ ai + JW' 
4- (a1 + (v )* + 4R2 

Comparing equations (27) and (30) while substituting U,a/k from equation (20) 

yields an equation in one unknown (al) which is solved numerically (see appendix 4) and 

the results are shown in the next section. 
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4. RESULTS 

4.1 Uniqucness of the solution 

I Given the thickness of the wing and the position of the separation point, three solutions 
, 

for the position of the vortex were found (see figure 4 ) : 

1 In the first solution, the vortex moves farther from the wing and becomes stronger as 

the angle of at tack increases. 

In the second solution, which as appears in figure (4) is an extension of the first one, 

the vortex moves closer to the wing surface and its strength increases as the angle of attack 

increases. 

In the third solution, the vortex is under the wing and again moves farther away and 

becomes stronger as the angle of attack increases. 

The second solution dissappears when the separation point is exactly at the leading 

edge. It should also be noted that all three families of solutions exist for the limiting cases 

of the flat triangular wing and the circular cone. 

Although it may be interesting to investigate further the posibility of existence as well 

as the stability of the second and third solutions, they will not be considered further in 

this report. 

4.2 Existence of the Solution 

As is shown in figure (4) there is a minimum value of the parameter Q / E  below which 

no solution exists. This is in agreement with experimental observations (see references 
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5,8,9,10), the explanation being that at small angles of attack the body radius as it grows 

in the z-direction prevents the departure of free vortices. When the angle of attack becomes 

sufficiently high, the vorticity in the boundary layer accumulates along rays near the upper 

surface of the body. The vortices generally do not separate from the body until some higher 

angle of attack is reached (reference 9). 

However, since in this model no account of the viscosity has been taken, this result 

shows that it is also the kinematics of the flow field which prevents the formation of the 

vortices at low angles of attack. 

In figure ( 5 ) ,  the minimum value of a/€ has been plotted against the position of the 

separation point for wings of various thickness. It can be seen that becomes 

smaller as the thickness of the wing diminishes. In the limiting case of a flat delta wing 

separation begins immediately for any a > 0 (provided that the separation point is fixed 

at the leading edge). This is also in agreement with experimental observations (references 

519). 

On the other hand, it becomes progressively more difficult to obtain a solution as the 

separation point is moved from the upper surface towards the leading edge and on the 

lower surface. 

Although no experiments that show the effect of the position of the separation points 

on the formation of the vortices have been performed yet, intuitively it can be said that 

since the observed separation point on delta wings 

upper surface, it is normal to expect some difficulty 

the separation point is forced away from its natural 

with elliptical cross-section is on the 

in the formation of the vortices when 

position. 

4.3 Velocity Distribution on the Upper Surface of the Wing 

The conical inviscid solution of the velocity field is a function of y/z rays. Therefore, 
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it is convenient to transform the velocity in the following way : 

& a 

Plots of this transformed velocity on the upper surface of an elliptical cone with 

6 = 15” and b = 0.2 exhibiting separation from the leading edge (6, = 0), are shown in 

figure (6) for various angles of attack. 

The location of the reattachment line is also shown in these plots and it can be seen 

that it moves towards the center line of the wing as the angle of attack increases. For this 

particular wing the two lines finally coincide at a N 23”. ~ 

At the center line y = 0, d V / d y  > 0 whereas at the reattachment line U / d y  < 0. 

When the two lines coincide then U / d y  > 0 as it can be seen in figure (6c). 

4.4 Pressure Distribution on the Wing 

The velocity field on the surface of the wing can be found by substituting 0 = y + tz 

and z = &bdGz into equations (13),(14) and (15) while letting y/a vary between -1 

and +l. The “plus” sign in z corresponds to points on the upper surface while the “minus” 

sign corresponds to points on the lower surface. Then, the pressure distribution on the 

surface of the wing can be found from Bernoulli’s equation : 

since for small a : tan a N a. Now : 
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but 

0: = u: + 9: + 2pzu00 

and if 6 - a then q5* - a' so if only terms of order a2 are maintained : 

Pz P : + d  cp H CY2 - 2- - (33) . 
Pressure distributions for a flat triangular wing as well as for two elliptical ones 10 per 

cent and 20 per cent thick, are shown in figure (7) for three angles of attack (7.5", 15" and 

30"). The separation point has been fixed at the leading edge while the semi-apex angle 

of the cone has been kept constant 6 = 15" for easy comparison. Several observations can 

be made from these plots : 

(i) The very low pressure region on the upper surface of the wing is caused by the 

presence of the vortex and the negative pressure peak corresponds approximately to the 

lateral position of the vortex. 

(ii) The negative pressure peak on the upper surface becomes wider and its absolute 

value increases as the angle of attack increases. This is a result of an increase in the 

strength of the vortex which thus influences a wider area over the wing. 

(iii) Increasing the thickness of the wing also makes the vortex stronger (for the same 

angle of attack) as can be seen by comparing the negative pressure peak for the three 

different wings. 
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I (iv) The pressure jump at the leading edge ( y / a  = 1) is of course due to the connecting 

vortex sheet and.it moves around with. the separation point. 

4.5 Lift 

The normal force can be obtained by calculating the change in downward momentum 

through an infinite plane perpendicular to the longitudinal axis z of the wing at the trailing 
I 
l edge. Thus : 

0 

I Note that p, is the velocity component in a plane perpendicular to the wing surface 
l and therefore it contains the upwash contribution of the free stream. Integrating with 

respect to z produces a contour integral of the velocity potential : 

The contour c is shown in figure (sa) and includes the wing trace plus the cuts con- 

necting the separation points with the centers of the vortices. The vortices may be included 

in the body without affecting the normal force since the forces on them cancel those on 

their feeding sheets. 

In terms of the complex potential w ( a )  = p + s$, equation (35) can be written as : 
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but since 1(' = 0 on the body and is single valued on the vortices and the feeding 

sheets, the second integral vanishes. Furthermore, the function w ( a )  is analytic in the 

field external to the contour; hence, the integral is independent of the path provided 

that it encloses the original contour. The simplest way to integrate equation (36) is by 

transforming it to the (-plane (see figures 2d and 8b) : 

Substituting a(<) from figure (2) into equation (5) and noting that : 

equation (37) becomes : 

Note that the source term has been omitted from the complex potential since it is 

axisymmetric and therefore produces no net downward momentum. The integral of the 

logarithm can be evaluated by surrounding the contour by a large circle whose radius -, 00. 

Since there are no singularities between the contour and the large circle the integrals are 

equal. The remaining integration is evaluated along the vertical line between the branch 

points at f s ( a  + b )  giving finally : 
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Transforming back to the a-plane gives the result : 

For small angles of attack (as it has been assumed so far) the normal force can be 

taken equal to the lift. This is in agreement with the well known result that for a lightly 

loaded wing (small perturbation flow) the induced drag is a second order quantity. , 

Defining the lift coefficient as : 

. 
where 

and 

we get : 

1 
900 = ZPU: 

1 a a2 Swp = -(2a)z = a- = - 
2 E €  

(43) 

(44) 

I (45) 
2rE 

a-b 

I The second term is the slender body theory result (R.T.Jones), while the first term is 

the nonlinear contribution of the vortex separation. 
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Equation (45) can also be written as : 

Figure (9) shows how the lift coefficient varies with angle of attack for different posi- 

tions of the separation point. A comparison of figures (sa) (flat plate) and (9b) (ellipse 10 

per cent thick), shows that the general trend is to get higher CL as thickness is added on 

the wing. It can also be seen that for a given thickness of the wing the gain in lift increases 

as the separation point is moved on the lower surface farther and farther from the leading 

edge. 

On the other hand, this increased gain in lift requires higher angle of attack as the 

intersection of the curves and the minimum a/& values indicate. This is consistent with 

the fact (already discussed in section 4.2) that the vortex system delays its appearance as 

the separation point is moved on the lower surface. To better understand why the curves 

intersect each other let us consider two specific ones, namely the one for 6, = 0.05(1) and 

the one for 6% = 0.02(1) for the ellipse. 

Below (a /€ )  = 1.99, there can be no vortex system for 6, = 0.05 while there is one 

for 6, = 0.02. Therefore, despite the fact that the vortex strength will grow faster for 

6 = 0.05 from the moment of its appearance, the vortex system for 6 = 0.02 has already 

been formed at lower angles of attack. As a result of this pre-existence there is a certain 

range of a / e  (1.4 5 a / e  5 2.33) in which the vortex system for the lower 6, provides more 

lift until, at a/& = 2.33 the vortex system for the higher 6, catches up. 

Figure (10) shows the change in lift for various positions of the separation point. The 

lift for 6, = 0 (i.e. separation from the leading edge), has been taken as reference. 
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5. CONCLUSIONS 

An extension of the %ingle line vortex with a straight feeding vortex sheet” model to 

delta wings with elliptical cross-section, as well as a study of the effect of the position of the 

separation points on the formation of the vortex system, leads to the following conclusions 

regarding the lift generated on such wings : 

(i) The lift curve slope of a delta wing with elliptical cross-section goes up with 

increasing thickness. However this advantage cannot be realized at small angles of attack 

due to the increased difficulty in the formation of the vortex system. 

(ii) Significant gain in lift can be realized by forcing the separation point away from its 

natural position oil the upper surface of the wing (as it is known to be from experiments) 

towards the leading edge or even farther on the wing’s lower surface. Again, this advantage 

has the same angle of attack limitations as mentioned above. 
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Figure 1. The geometry of a delta wing with elliptical cross-section. 
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Figure 2. Conformal transformations used in the analysis of the cross-flow. 
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Figure 3. Schematic of the details in the cross-flow plane. 
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Figure 5. (a/c),,.in w.dietance of the SP from the LE of the wing. 
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Figure 8. Contours of integration for the normal force. 



Figure 9a. Lift coefficient vs. angle of attack for a flat cross-section. 
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Figure 9b. 

Lift coefficient VI. angle of attack for 'an elliptical cross-section 10 per cent thick. 
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APPENDIX 
Expanding Ellipse 

1 : The Complex Potential for an 

In reference 1, the complex potential for an expanding ellipse is given by : 

S'(z) Q + l/7-=2 
2 

w,(a)  = VoOb0(z) + UoO- 
2 A  

and since for an elliptical cone : 

S(z) = rub 

a = ztand H X E  

b = xtan6 N x6 

we get : 

S'(z) H 2~z.56 = 2 ~ u 6  = 2 n b ~  

Also, b o ( z )  is defined as : 

(Al . l )  

(A1.2) 

(A1.3) 

(A1.4) 

(A1.5) 
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1 1 - p O ( o + )  In z - p0(1-) In (1 - 2) 

where 

H €6 .SI'( 2) 
ab(2) = - 

21r 

and for incompressible flow : 

p = 1  

The first integral in equation (A1.6) becomes : 

while the second integral in equation (A1.6) gives : 

1 
1- 

1 - -~6/ ln( [ -z )c i f=  2 - ~ 6 ( 1 - z ) [ l n ( l - z ) - 1 ]  2 

for the last two terms in equation (A1.6) we have : 

(A1.6) 

(A1.7) 

ao(O+) = lim ao(z) = o 
z+o+ 
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ao(l-) = lim ao(z) = e6 
2-1 - 

and equation (A1.6) gives : 

b,(z) = --E6 {z [In24-- 11 + f }  (A1.8) 

Substituting equations (A1.5) and (*41.8) into equation (Al.l), we finally get for the 

complex potential of an ellipse that expands in a conical manner : 

u + v  (A1.9) 
2 

w,(u) = -U,e6 
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APPENDIX 2 : Derivation of an Expression for 
the Separation Point Location 

The distance of the separation point from the leading edge is given by : 

and since 

equation (A2.1) gives : 

q = / dq = / Jdy2-tdtz 

Y b2 d z  = - - -dy 
z a2 

Y2 y2a2 
z2 P(a2 - y2) 
- =  

and for a = 1 : 

r l =  r f l , / q d y  1 

(A2.1) 

(A2.2) 

(A2.3) 

(A2.4) 

(A2.5) 

(A2.6) 
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or, since c2 = a2 - b2 = 1 - b2 , 

(A2.7) 

To avoid the evaluation of the elliptic integral of the second kind, the integrand will 

be simplified in the following manner : 

(A2.8) 

since close to the leading edge y N 1. 

Note that the above expression is valid for all thicknesses i.e. from the flat-plate case 

(c = 1) to the circle case (c = 0). Substituting equation (A2.8) into (A2.7) we get : 

and integration by parts gives the final expression : 

(A2.9) 

(A2.10) (1 - c)(l - c +  cb,) 

- 49 - 



APPENDIX 3 : Evaluation of the derivative dw/da 

For the term in equation (6) the derivative with respect to x can be evaluated 

directly : 

(A3.1) 

For the rest of the complex potential (we/ + w,,) we have : 

and since el, 8, (or ul, a,), k ,  u and b are all linear functions of z we have : 

dR R 
da a 
- = -  

db b 
da a 
- = -  

- 50 - 

(A3.3) 

(A3.4) 

(A3.5) 

(A3.6) 



while from equation (19) we get : 

so 

dk k 
da a 
- = -  

(A3.7) 

(A3.8) 

Now from equations (3) and (7) we get : 

01 - “ ) + Urn$ (A3.9) 
aw 1 1 - = -sU,a (1 + $) - sk (- - - ae e - el e + 3, + 08, + R* eel - ~2 

(A3.10) 

(A3.11) 

(A3.12) 

(A3.13) 
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- = u,elne 
a b  

Finally, from equation (4) we have : 

de 1 
do 2 
- = - (1 + 

(A3.14) 

(A3.15) 

(A3.16) 
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APPENDIX 4 : Program Listings 

This appendix contains four FORTRAN programs : 

The fint one, ELLI, solves for the position of the vortex nl from equations (27) and 

(30). 

The second one, TRAVEL, computes the transformed velocity on the surface of the 

wing from equation (31). 

The third one, CPELL, computes the pressure coefficient on the surface of the wing 

from equation (33). 

Finally the fourth one, CLELL, computes the lift coefficient from equation (46). 
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C 
10 WRITE(5,100)Y,Z 
100 FORMAT (2E30.5) 

CALL JACOB (Y, Z, J) 
CACL SPLIT (Y, Z, F1, F2) 
DET=J(1,1) *J(2,2)-5(1,2)*5(2,1) 
HY=(J(2,2) *Fl-J(1,2) *F2)/DET 
HZ= (J (1,l) *F2-J (2,l) *F1) P E T  
Y=Y-HY 
z=z-Hz 
IF (ABS (HY) .LT. 1. E-5 .AND .ABS (HZ) .LT. 1. E-5) 
GO TO 10 

STOP 
END 

20 WRITE(5,100)Y,Z 

SUBROUTINE SPLIT (Y, Z, W1, W2) 
EXTERNAL F 
COMPLEX S,W,F 

W=F (S) 
Wl=REAL (W) 
W2=AIMAG (W) 
RETURN 
END 

S=Y+ (0,l)  *z 

SUBROUTINE JACOB (Y, Z, J) 
REAL J 
DIMENSION J (2,2) 
CALL SPLIT (Y, Z, F1, F2) 
DY=O .OO1 
Yl=Y+DY 
CALL SPLIT(Yl,Z,FlY,F2Y) 
J (l,l)=(FlY-Fl)/DY 
J (2,l) = (F2Y-F2) /DY 
DZ4.001 
Zl=Z+DZ 
CALL SPLIT(Y,Zl,FlZ,F2Z) 
J (1,2) = (FlZ-F1) /DZ 
J(2,2)=(F2Z-F2)/DZ 
RETURN 

GO TO 20 



END 

C 
C 
C 

C 

C 
C 
C 
C 

COMPLEX E'UNCTION F (S) 
COMPLEX S,Gl,G2,T, THO, THl,QKl,QK2,QK.Fl,F2,F3.F4,FS 

DATA 

A€=? 
A=l.O 
B=? 
DY=? 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C=SQRT (A* * 2 -B* * 2) 
R=O. 5* (A+B) 

If the separation point is on the upper surface DZ>O 
If the separation point is on the lower surface DZ<O 

DZ=(+ or - )SQRT(B**2-B**2* (A-DY) **2/A**2) 

G2=CONJG (Gl) 

THO= (S+G1) /2 
THl=CONJG (THO) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

GlzCSQRT (S* * 2 -C* * 2) 

-(A-DY+(O, 1) *DZ+CSQRT( (A-DY) **2-DZ**2-C*C+2* (0,l) * (A-DY) *DZ))/2 

QK1= (TH1* * 2 + 2 * T* 7331 -R* * 2) / ( (T+THl) * (T* TH1 -R* * 2) ) 
QK2=(R**2+2*T*THO-THOH0**2)/ ( (T-THO) * (T*THO+R**2)) 
QK= (QK1-QK2) *T* * 2/ (T* * 2+R* * 2) 
F1=(2*CONJG(S) +DY+ (0,l) *DZ-A)/(A*AE) 

F3=THO/ (2 *THO* * 2+2 *R*R) -TH1/ (2 *THO*THl- 2 *R*R) - 1/ (2 * (THO+THl) ) 
F2=(0,1) *(l+S/Gl) * (O.S+R**Z/(Z*THO**Z)) 
F4=(0,1) *C*C/(4*Gl**Z*THO) 
F5=B/ (AE*Gl) 
F=QK* (Fl+FZ-FS) + (0,l) * (l+S/Gl) *F3-F4 
RET" 
END 



C 
C 

I C  C 

C 
C 
C 

C 
C 
C 

I C 

C 
C 
C 

C 

C 



C 
C 

2 

C 

C 
C 
C 

C 
C 
C 

100 



C 
C 
C 
C 
C 
C 

C 
C 
C 

C 

C 
C 
C 
C 

C 
C 
C 
C 
1 

I 

C 

C 
#. 

A=l.O 
B=? 
ALFA=? 
A€=? 
DY=? 

GP=3.14159 
s1= (?, ?) 

- - - - - - - - - - -  

The "plus"  sign is used for p o i n t s  on the upper s u r f a c e  
The "minus" sign is used f o r  p o i n t s  on the lower s u r f a c e  

Z=(+ or -)B*SQRT(l- (Y/A) **2) 

SZ=CONJG (Sl) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

S=Y+ (0,l) *z 
G=CSQRT (S * * 2 -C* * 2) 
Gl=CSQRT (S1* *2-C* *2 )  
G2zCSQRT (S2* *2-C**2) 
T= (S+G) /2 
T1= (Sl+Gl) /2 
T2= (S2+G2) /2 
SPl=CSQRT( (A-DY) **2+2*DZ* (A-DY) * (0,l)  -DZ**Z-C**2) 
Spa. 5* (A-DY+ (0,l) *DZ+SPl) 
Ql=(SP+T2) * (SP-T1) * (SP*T2-R**2) * (SP*Tl+R**2) 
Q2=SP**2* (Tl+T2) * (R**Z-Tl*TZ) 
QF=l/(T-Tl) -1/(T+T2) +Tl/(T*Tl+R**Z) -T2/(T*T2-Rf*2) 

TA=-C**Z/(Z*A*G) 

Q= (QVQ2) *ALF 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

TlA=Tl/A 
T2A=T2 /A 

BA=B/A 

TS= (l+S/G) /2 

RA=R/A 

QA=Q/A 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

L X - COMPONENT OF THE VELOCITY VECTOR 



C 

2 

C 

C 
C 
C 

C 

100 



10 

C 
C 
C 

C 
C 

I C 

C 
C 
C 
C 

100 

200 I 

THIS PROGRAM COMPUTES THE LIFT COEFFICIENT 
FOR A DELTA WING WITH ELLIPTICAL CROSS-SECTION 

OPEN(UNIT=6, FILE='TTY:',STATUS='NEW') 
A=l.O 
P=3.14159 
CONTINUE 
WRITE (5,101 
FORMAT(/, I '  Enter AE, S (complex) , B,DY (real) 
READ(6,*) AE, S, B, DY 

below. ' ) 

QK2=(R**2+T*THl-. 25*TH1**2)/( (T- .5*TH1) * (.5*T*THl+R**2)) 
QK=T* * 2/ (T* * 2 +R * * 2) * (QK1 -QK2) 
FL= (1+ (A+B) / (A-B) ) *G1+ (1- (A+B) / (A-B) ) *S 
CL2= (4*P*AE/ (QK*A**2) ) *REAL (FL) 

, 

CL=CLl+CL2 
WRITE (5,100) CL 
FORMAT(/,F20.3) 
WRITE (5,200) 
FORMAT(/,' Do you want to continue? 
READ(6,*) ilog 
IF(ilog.EQ.1) GO TO lo00 
STOP 
END 

for yes- 0 f o r  


